

Will it Blend?
Questions to ask your Application Security Tool Vendor

Introduction

• 15 years in Enterprise IT Services doing…not security

• 10 years as an Application Pentester
• 5 years for a great 50 person company

 BOUGHT OUT

• 9 months at a "big 4" firm

• 4 months for a great 50 person company

 BOUGHT OUT

• 3 years at an aspiring "big" firm

• Started my aspiring great 50 person company

Disclaimer

Background Image by kjpargeter on Freepik

Fool me once…

The Impossible Question – Access Control

Should one user be able to access another user's phone number?

Vulnerability Scanners / Automated Pentests

Tools that search a network for active services and report known
vulnerabilities in the software version.

1. Start with a port scan

2. Attempt to interact with services
on known ports to identify
software and versions.

3. Attempt "Safe" exploitation of
known vulnerabilities.

4. Report successful exploitation
and potential vulnerabilities that
are "unsafe" to probe.

Tools in the Family

• Nmap with NSE scripts

• Nessus

• Nikto

• Nexpose

• Greenbone / OpenVAS

Vulnerability Scanners – The Good

Clever hacker
discovers a

vulnerability

Hacker informs
product owner OR

product gets hacked
enough to draw

attention

Product owner
releases a patch

CVE Assigned

Users scramble to
patch

Defenders must constantly monitor announcements from every
product in their environment and/or use an automated tool to

monitor new vulnerabilities for them.

Vulnerability Scanners – The Bad

• Vulnerability scanners only detect the vulnerabilities other people have
discovered.
• There is a delay between CVE release and scanner update

• Can be very short for the best tools
• Is probably faster than individuals working alone

• Not intended to defend custom web applications

Tough Questions
• Can the scanner find vulnerabilities in my custom applications?

• How long does it take for a vulnerability to be announced until the scanner's database is
updated?

• Does the scanner support authentication with services? How is that configured?

Vuln. Scanner Bonus – Dependency Scanning

Tools that analyze libraries referenced by your source code to see if any
published CVEs affect them.

1. Enumerate referenced
libraries.

2. Determine the library version.

3. Match the library name and
version to known CVEs.

4. Report any CVEs that apply.

Tools in the Family

• Dependency-Check

• Snyk

• Sonatype Nexus

• Black Duck

Web Application Firewalls

Web Application Firewalls

Tools that monitor network traffic for text patterns that match known
attacks.

1. Install inline with application
network traffic (post TLS
termination)

2. Run in "training" mode and
gradually tune rules until
legitimate traffic is not blocked.

3. Switch to "blocking" mode to
reject any traffic that matches a
rule.

Tools in the Family

• ModSecurity

• Imperva

• F5 Cloud WAF

• AWS/Azure WAF

OWASP Top 10?

• A01 - Broken Access Control

• A02 - Cryptographic Failures

• A03 - Injection

• A04 - Insecure Design

• A05 - Security Misconfiguration

• A06 - Vulnerable and Outdated
Components

• A07 - Identification and Authentication
Failures

• A08 - Software and Data Integrity Failures

• A09 - Security Logging and Monitoring
Failures

• A10 - Server-Side Request Forgery

WAFs – The Bad

Defender Attacker

WAFs – The Dream Implementation

• Instead of (or in addition to) trying to guess the format of what the
attacker will do, define what the application does and reject
everything else.

• The data types of most application parameters are known and
relatively simple.

• Defining a pattern for every parameter takes time.

• Some parameters (free form text) will require a very permissive
pattern and must be backed up by application validation.

Allow List instead of Block List

The Impossible Question – Access Control

Should one user be able to access another user's phone number?

WAFs – What to ask

Tough Questions
• How restrictive are your rule sets out of the box?

• Won't that block my application traffic OR won't that allow attackers in?

• What tools are available to help me configure the filters?

• How does your product defend against…
• A01 - Access Control abuse

• A02 - Cryptography Failures

• A04 - Insecure Design

• A07 - Identification and Authentication Failures

• A09 - Security Logging and Monitoring Failures

• A10 - Server-Side Request Forgery

Static Application Scanning Tools

Tools that examine the source code of an application to identify
security vulnerabilities.

1. The user configures the location
of the code base.

2. Processes the code to make an
internal model*

3. Run a set of rules against the
model looking for vulnerable
patterns

4. Report all locations where the
pattern was found

Tools in the Family

• grep

• SemGrep

• SonarQube

• Checkmarx

• Fortify

• Veracode

• Snyk Code

• Coverity

Speed Running SAST History

db.query("SELECT * FROM users WHERE username='"+param[1]+"';")

grep –i 'query.+SELECT.+param' *

Run a query to select the username based on the submitted parameter

FALSE POSITIVE

- grep

Speed Running SAST History

findUser = "SELECT * FROM users WHERE username='"+param[1]+"';"
db.query(findUser)

syntactic-search "method='query', parameter ~= concat(string, var=param)"

def findUser(un):
 db.query("SELECT * FROM users WHERE username='"+un+"';")

findUser(param[1])

FALSE NEGATVIE

- Syntactic Search

Speed Running SAST History

def findUser(un):
 db.query("SELECT * FROM users WHERE username='"+un+"';")

findUser(param[1])

- Symbolic Exec.

1. Parse the code to produce syntactic tokens.
2. Simulate execution with no actual interaction with users, network, file

system, etc. (make a lot of assumptions)
3. Track code flow between function calls and across branches.
4. Among other things track where input would have come from (a source)

and where it might be dangerous (a sink).
5. Evaluate a wide variety of rules.

SAST – The Good

• A01 - Broken Access Control

• A02 - Cryptographic Failures

• A03 - Injection

• A04 - Insecure Design

• A05 - Security Misconfiguration

• A06 - Vulnerable and Outdated Components

• A07 - Identification and Authentication
Failures

• A08 - Software and Data Integrity Failures

• A09 - Security Logging and Monitoring Failures

• A10 - Server-Side Request Forgery

Good results can be achieved with proper tuning
• Identifying input validators

• Managing 3rd Party Libraries

• Gradually enabling rules to manage workload

SAST – The Bad

• Long Run Times

• High Numbers of False Positives

The Impossible Question – Access Control

Should one user be able to access another user's phone number?

SAST – What to ask

Tough Questions

• How does your tool recognize/handle input validation methods?

• How does your tool keep analysis times down?

• How does your tool handle 3rd party libraries?

Static Bonus - Secret Scanning

API Tokens

Encryption
Keys

Passwords

Dynamic Application Security Tools (DAST)

Tools that simulate a user/browser and navigate a live site while
submitting data that triggers or detects vulnerabilities.

1. Provide the scanner a starting
URL and optionally credentials.

2. The scanner spiders the site
looking for links and input fields.

3. Payloads are submitted where
possible.

4. Responses are analyzed for signs
of vulnerabilities.

Tools in the Family

• Acunetix

• Invicti (Netsparker)

• BurpSuite Active Scan

• ZAP Active Scan

DAST – The Good

• A01 - Broken Access Control

• A02 - Cryptographic Failures

• A03 - Injection

• A04 - Insecure Design

• A05 - Security Misconfiguration

• A06 - Vulnerable and Outdated Components

• A07 - Identification and Authentication
Failures

• A08 - Software and Data Integrity Failures

• A09 - Security Logging and Monitoring Failures

• A10 - Server-Side Request Forgery

• Code agnostic

• Low rate of false positives

• Less setup/configuration

DAST – The Bad – Site Coverage

JAVASCRIPT

WEB CRAWLERS

Site coverage is increasingly poor.

DAST – The Bad – Site Pollution

Why not?

Does your site look like this after a scan?

DAST – What to ask

Tough Questions

• How do your tool deal with complex JavaScript user interfaces?

• Does the tool leave behind objects with malicious payloads as attributes?
• If not: How do you detect stored cross-site scripting?

The Impossible Question – Access Control

Should one user be able to access another user's phone number?

DAST Bonus – Interactive AST

Tools that instrument (inject inside) the server process to observe code
execution during active use.

1. Use debugging/reflection
techniques to add monitoring
inside the server process.

2. Exercise the site through
normal use, QA scripts,
automated browsers.

3. Observe sources, sinks, other
vulnerable code handling of
requests.

Tools in the Family

• Contrast Assess

• Synopsis Seeker

• Hdiv Detection

Conclusions

1. Put the tool into the correct family.

2. Think about what is hard for similar tools.

3. Ask the vendor HOW they overcome the difficulties.

4. Challenge flamboyant claims with specific vulnerability types

When in doubt?

How do you test for access control vulnerabilities?

The Impossible Question – Access Control

Should one user be able to access another user's phone number?

Thank You!

Mark Hoopes

mark@meristeminfosec.com

https://www.linkedin.com/in/markhoopes/

	Slide 1: Will it Blend?
	Slide 2: Introduction
	Slide 3: Disclaimer
	Slide 4: Fool me once…
	Slide 5
	Slide 6: The Impossible Question – Access Control
	Slide 7:
	Slide 8: Vulnerability Scanners / Automated Pentests
	Slide 9: Vulnerability Scanners – The Good
	Slide 10: Vulnerability Scanners – The Bad
	Slide 11: Vuln. Scanner Bonus – Dependency Scanning
	Slide 12: Web Application Firewalls
	Slide 13: Web Application Firewalls
	Slide 14: OWASP Top 10?
	Slide 15: WAFs – The Bad
	Slide 16: WAFs – The Dream Implementation
	Slide 17: The Impossible Question – Access Control
	Slide 18: WAFs – What to ask
	Slide 19: Static Application Scanning Tools
	Slide 20: Speed Running SAST History
	Slide 21: Speed Running SAST History
	Slide 22: Speed Running SAST History
	Slide 23: SAST – The Good
	Slide 24: SAST – The Bad
	Slide 25: The Impossible Question – Access Control
	Slide 26: SAST – What to ask
	Slide 27: Static Bonus - Secret Scanning
	Slide 28: Dynamic Application Security Tools (DAST)
	Slide 29: DAST – The Good
	Slide 30: DAST – The Bad – Site Coverage
	Slide 31: DAST – The Bad – Site Pollution
	Slide 32: DAST – What to ask
	Slide 33: The Impossible Question – Access Control
	Slide 34: DAST Bonus – Interactive AST
	Slide 35: Conclusions
	Slide 36: The Impossible Question – Access Control
	Slide 37: Thank You!

