
We Fight For The User’s…
Session

BSides Las Vegas 2025 Mark Hoopes

FTPgopherfingerHTTP

Session Defenses… Why?

I’m tired of writing cookie attribute

 and security header findings.

What do you want to sell?

Cookies and logins

[discussion about this not
being the marketplace]

Sell away!

Session Protection
“On-the-wire”

Secure
 Optional. The Secure attribute (with no value)
directs the user agent to use only (unspecified) secure
means to contact the origin server whenever it sends back
this cookie.

RFC 2109: Section 4.2.2

HTTP Strict Transport Security

https://hstspreload.org/

https://hstspreload.org/

But…Network Segmentation…

“On-the-wire” Defenses

❑ Use HTTPS

❑ Set the “secure” attribute on all sensitive cookies

❑ Set the “Same-site: Strict” attribute on all sensitive cookies

❑ Return the “Strict-Transport-Security” response header

❑ List your site on the HSTS Preload List (https://hstspreload.org/)

❑ Disable HTTP completely

https://hstspreload.org/

JavaScript Injection
(a.k.a. Cross-site Scripting)

Origins of “Cross-site Scripting”

JavaScript Executed

JavaScript Injection (JSI) Defenses

4.1.2.6. HttpOnly

 Syntax Servers MUST NOT include a value.

 Semantics The user agent SHOULD protect
confidentiality of cookies with the HttpOnly
attribute by not revealing their contents via
"non-HTTP" APIs. (Note that this document does not
define which APIs are "non-HTTP".)

Set-Cookie:
session=03HMPAPjvLt8UISBQBnDrSSAAAAWVFR9gg41o;
domain=.example.com; secure; httponly; SameSite=None

x=new XMLHttpRequest();
u='https://example.com/api/cookietest’;
x.open('GET', u, true); x.send();

> document.cookie undefined

GET /api/cookietest HTTP/2
Host: www.example.com
Cookie: session=03HMPAPjvLt8UISBQBnDrSSAAAAWVFR9gg41o

http://www.example.com/

Not All Session Tokens are Cookies

• Authorization headers are not handled automatically by the browser
• Except for “basic” authentication (bad for different reasons)

• Client-side JavaScript MUST be able to manage the token
• Best-practice: hide the token inside a worker thread

Authorization: BEARER 03HMPAPjvLt8UISBQBnDrSSAAAAWVFR9gg

Main Client Code
Network Request

Thread
API

Authenticate
(ID, password) POST (‘/authenticate’,

ID, password) DoAuth
 return(token)

return(‘success’)

DoAThing(param)
POST (‘/thatthing’,
token, param) DoThing

 return(result)

return(result

JavaScript Injection Defenses

❑ Set the “httponly” attribute on all sensitive cookies

❑ Isolate header token values in worker threads

❑ Don’t be vulnerable to JavaScript Injection

❑ Classic Input Validation and Output Encoding

❑ Use a tailored Content Security Policy

Blind Session Attacks

No token. No problem?

JavaScript Executed

/admin/addEditor?docId=21&userId=42

CSRF Requirements - Then

Condition Defense

The target site must use cookies for
authentication

Authorization Header
Anti-CSRF Token in Header
Same-Site Attribute on session cookie

The endpoint must use the GET or POST
methods

Using UPDATE or DELETE methods

The endpoint must use only predictable
parameters

Require an anti-CSRF token as a
parameter

The results must be state-changing Above defenses can in theory be applied
only to requests that change state.

CSRF Requirements - Now

Condition Defense

The target site must set

 Same-Site: None
 attribute on the session cookie

OR

The attack must originate from the same
“origin”

DON’T DO THIS

The JavaScript Injection Loophole

• Since the request comes from the same site
• Cookies will always be sent

• JavaScript is allowed to read page contents to retrieve CSRF tokens

• JavaScript is allowed to add custom request headers (authentication and
anti-CSRF)

• JavaScript can call worker threads to submit protected tokens

If you have a JavaScript Injection vulnerability on your site…

ALL IS LOST

Clickjacking / UI Redressing

• Technically a risk
• Facebook got hit with a number of attacks around 20xx

• Very rarely seen in web apps

• More of an issue in mobile apps, but sessions are different inside an
application

• Simple to prevent
• X-Frame Options Header

• Frame-Ancestors Content Security Policy Directive

Post-Compromise
Defenses

Login

Lifetime of a Session Token

Logout

Compromise Logout

Login

Session Lifetime: User doesn’t log out

Logout

Compromise

Idle
Timeout

Absolute
Timeout

Why JWTs are BAD BAD BAD Slightly Worse

Login Logout

Compromise Expiration

Session Length Summary

• Make your idle and absolute session timeouts as short as the
business will allow

• Allow multiple sessions only if the use case requires it

• If multiple sessions are allowed, show active sessions to the user
somewhere

• Implement a “Last Login” message

• Require reauthentication before doing the most sensitive tasks

State of the Art

Cross-device tokens aren’t a thing

Token Binding (Microsoft 2016)

1. Client initiates the TLS connection with the “token binding” extension set to
active and the server responds that it is supported.

2. Client generates a public/private key pair for this specific server/session and
stores the private key in the TPM.

3. Client sends the public key in an HTTP Request header during the
authentication process.

4. If authentication is successful, the server stores the public key with the session.

5. On future requests, the client takes random constants exchanged during TLS
initiation, encrypts them with the private key, and sends the encrypted values
to the server.

6. The server uses the client’s public key to decrypt the values and compares
them with the random constants it also knows to verify the session.

TLS ExtensionPub/Priv Key Pair HSM/TPM HTTP Header

TPM
Browser Web Server

Generates a
keypair, returns
the public key

Initiates TLS w/ Token
Binding Extension TLS Response

“Supported”

Requests a public key

Submits public key in
HTTP Header If password

authentication is
successful, stores
public key in
session.

Token Binding – Session Initiation

Encrypts
constants with
private key

Initiates TLS Session

Initiates TLS Session

Reads session constants

Submits encrypted
constants as HTTP Header Reads session

constants.
Decrypts Header.
If match, request is
authenticated.

TPM
Browser Web Server

Token Binding – Future Requests

Device Bound Session Credentials (Google 2024)

1. The user signs in to the website.

2. The server returns an HTTP header with a challenge, and token
management endpoints.

3. The browser generates a public-private key pair with the private
key stored in the TPM.

4. The browser POSTs the signed challenge and public key to a
“startsession” endpoint.

5. The server returns a session token with a “short” lifetime.

6. When the token expires, the browser requests a new challenge
from the “refresh” endpoint.

7. The challenge is signed and resubmitted to get a fresh token.

DBSC Specification Disclaimer

TPM
Browser Web Server

Generates a
keypair, returns
the public key and
signed challenge

User submits credentials
(password, 2FA, etc.) Starts session. Returns

DBSC Registration header
with a challenge string
and Session Start URLRequests a public key

and a signature on a JWT
including the challenge

Submits a signed JWT
with the challenge and
public key

Stores the public
key with the
session. May change
the expiration of
the cookie to
“short”

DBSC – Session Initiation

Sample Response Headers AFTER
Credential Validation

Sec-Session-Registration: (ES256 RS256); path="/internal/StartSession";
challenge="ycwmtuwvmr"; authorization="auth-code-123“

Set-Cookie: sessionID=b145181c4cbd4321841bee21d5a876e6;
Domain=drubery-dbsc-test-server.deno.dev; Path=/

Supported Encryption Modes DBSC Registration Endpoint

Challenge Text Registration ID

Normal Session Cookie – Long Lived?

TPM
Browser Web Server

Generates a
keypair, returns
the public key and
signed challenge

User submits credentials
(password, 2FA, etc.) Starts session. Returns

DBSC Registration header
with a challenge string
and Session Start URLRequests a public key

and a signature on a JWT
including the challenge

Submits a signed JWT
with the challenge and
public key

Stores the public
key with the
session. May change
the expiration of
the cookie to
“short”

DBSC – Session Initiation

JWT Payload Submitted to
DBSC Registration Endpoint
Payload = {

 "aud": "https://drubery-dbsc-test-server.deno.dev/internal/StartSession",

 "authorization": "auth-code-123",

 "iat": 1753291358,

 "jti": "ycwmtuwvmr",

 "key": {

 "crv": "P-256",

 "kty": "EC",

 "x": "2W83hQlY13w4fwyR8_W9D7cvx_HrnsSNVHYqc109TLA",

 "y": "J-2qGmNIio9CtN07Zsxab2Sy2kqivFAIeJH7LiNeyWY"

 }

}

Registration ID

Session ID / Challenge

Public
Key

JSON Response Body Returned from
DBSC Registration Endpoint
{ "session_identifier": "ycwmtuwvmr",

 "refresh_url": "/RefreshEndpoint",

 "scope": {

 "origin": "https://example.com",

 "include_site": true,

 "scope_specification": [

 { "type": "exclude", "domain": "*.example.com", "path": "/static" }

]},

 "credentials": [{

 "type": "cookie",

 "name": “sessionID",

 "attributes": "Domain=example.com; Secure; SameSite=Lax"

}}]

Session ID / Challenge
Refresh Endpoint

Paths to be
protected or

excluded

Cookies
protected by

this DBSC
session

Also sets a short-lived session cookie named as indicated in the response

TPM
Browser Web Server

Generates a
keypair, returns
the public key and
signed challenge

Call to refresh endpoint
when cookie expires Returns DBSC Sec-Session-

Challenge header

Sends JWT payload
including challenge for
signing.

Submits signed JWT
Verifies signature
on JWT using stored
public key.
Sets new session
cookie.

DBSC – Session Refresh

Tips if you are trying to implement a PoC

• A valid HTTPS certificate is required

• You must “enable” the following Chrome flags
• enable-bound-session-credentials

• enable-bound-session-credentials-software-keys-for-manual-testing

• enable-standard-device-bound-session-credentials

• enable-standard-device-bound-session-persistence

• DBSC network requests aren’t shown in developer tools
• Can be captured using Burp, ZAP, etc. if proxy certificate is trusted

• Can be viewed in
• chrome://net-export/

• https://netlog-viewer.appspot.com/

Challenges for DBSC Adoption

• Requires implementation by application developers of two custom
endpoints
• Could be built into frameworks

• Having the browser take over some portions of session refreshing can
be confusing

• Debugging is difficult
• Reference implementations are needed

Thank You!

Mark Hoopes

mark@meristeminfosec.com

https://www.linkedin.com/in/markhoopes/

Slides and
Articles Suitable for Sharing with Developers

https://www.merisec.com/blog

https://www.merisec.com/blog

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6: Session Defenses… Why?
	Slide 7
	Slide 8
	Slide 9: RFC 2109: Section 4.2.2
	Slide 10
	Slide 11: But…Network Segmentation…
	Slide 12: “On-the-wire” Defenses
	Slide 13
	Slide 14: Origins of “Cross-site Scripting”
	Slide 15: JavaScript Injection (JSI) Defenses
	Slide 16
	Slide 17: Not All Session Tokens are Cookies
	Slide 18
	Slide 19: JavaScript Injection Defenses
	Slide 20
	Slide 21: No token. No problem?
	Slide 22: CSRF Requirements - Then
	Slide 23: CSRF Requirements - Now
	Slide 24: The JavaScript Injection Loophole
	Slide 25: Clickjacking / UI Redressing
	Slide 26
	Slide 27: Lifetime of a Session Token
	Slide 28: Session Lifetime: User doesn’t log out
	Slide 29: Why JWTs are BAD BAD BAD Slightly Worse
	Slide 30: Session Length Summary
	Slide 31
	Slide 32: Cross-device tokens aren’t a thing
	Slide 33: Token Binding (Microsoft 2016)
	Slide 34
	Slide 35
	Slide 36: Device Bound Session Credentials (Google 2024)
	Slide 37: DBSC Specification Disclaimer
	Slide 38
	Slide 39: Sample Response Headers AFTER Credential Validation
	Slide 40
	Slide 41: JWT Payload Submitted to DBSC Registration Endpoint
	Slide 42: JSON Response Body Returned from DBSC Registration Endpoint
	Slide 43
	Slide 44: Tips if you are trying to implement a PoC
	Slide 45: Challenges for DBSC Adoption
	Slide 46: Thank You!

