
We Fight For The User’s…
Session

SaintCon 2024 Mark Hoopes

FTPgopherfingerHTTP

Session Defenses… Why?

I’m tired of writing cookie attribute

 and security header findings.

What do you want to sell?

Cookies and logins

[discussion about this not
being the marketplace]

Sell away!

The Hypertext Transfer Protocol (HTTP) is an application-
level protocol with the lightness and speed necessary for
distributed, collaborative, hypermedia information systems.
It is a generic, stateless, object-oriented protocol which
can be used for many tasks, such as name servers and
distributed object management systems…

RFC 1945

Cookie RFC Section 8: Security Considerations

• Setting cross-domain cookies

• Browsers blocked this one effectively

8.3: Unexpected Cookie Sharing

• Abuse of cookies from subdomains

• Rare, but a thing. Liv Matan “My Terrible Roommates” BSidesLV 2024

8.2: Cookie Spoofing

• HTTP connections are not encrypted on the wire

• Let’s start here

8.1: Clear Text

RFC 2109

Session Protection
“On-the-wire”

Secure
 Optional. The Secure attribute (with no value)
directs the user agent to use only (unspecified) secure
means to contact the origin server whenever it sends back
this cookie.

RFC 2109: Section 4.2.2

HTTP Strict Transport Security

https://hstspreload.org/

https://hstspreload.org/

But…Network Segmentation…

“On-the-wire” Defenses

❑ Use HTTPS

❑ Set the “secure” attribute on all sensitive cookies

❑ Set the “Same-site: Strict” attribute on all sensitive cookies

❑ Return the “Strict-Transport-Security” response header

❑ List your site on the HSTS Preload List (https://hstspreload.org/)

❑ Disable HTTP completely

https://hstspreload.org/

JavaScript Injection
(a.k.a. Cross-site Scripting)

Origins of “Cross-site Scripting”

JavaScript Executed

JavaScript Injection (JSI) Defenses

4.1.2.6. HttpOnly

 Syntax Servers MUST NOT include a value.

 Semantics The user agent SHOULD protect
confidentiality of cookies with the HttpOnly
attribute by not revealing their contents via
"non-HTTP" APIs. (Note that this document does not
define which APIs are "non-HTTP".)

Set-Cookie:
session=03HMPAPjvLt8UISBQBnDrSSAAAAWVFR9gg41o;
domain=.example.com; secure; httponly; SameSite=None

x=new XMLHttpRequest();
u='https://example.com/api/cookietest’;
x.open('GET', u, true); x.send();

> document.cookie undefined

GET /api/cookietest HTTP/2
Host: www.example.com
Cookie: session=03HMPAPjvLt8UISBQBnDrSSAAAAWVFR9gg41o

http://www.example.com/

Not All Session Tokens are Cookies

• Authorization headers are not handled automatically by the browser
• Except for “basic” authentication (bad for different reasons)

• Client-side JavaScript MUST be able to manage the token
• Best-practice: hide the token inside a worker thread

Authorization: BEARER 03HMPAPjvLt8UISBQBnDrSSAAAAWVFR9gg

Main Client Code
Network Request

Thread
API

Authenticate
(ID, password) POST (‘/authenticate’,

ID, password) DoAuth
 return(token)

return(‘success’)

DoAThing(param)
POST (‘/thatthing’,
token, param) DoThing

 return(result)

return(result

JavaScript Injection Defenses

❑ Set the “httponly” attribute on all sensitive cookies

❑ Isolate header token values in worker threads

❑ Don’t be vulnerable to JavaScript Injection

❑ Classic Input Validation and Output Encoding

❑ Use a tailored Content Security Policy

Blind Session Attacks

No token. No problem?

JavaScript Executed

/admin/addEditor?docId=21&userId=42

CSRF Requirements

Condition Defense

The target site must use cookies for
authentication

Authorization Header
Anti-CSRF Token in Header
Same-Site Attribute on session cookie

The endpoint must use the GET or POST
methods

Using UPDATE or DELETE methods

The endpoint must use only predictable
parameters

Require an anti-CSRF token as a
parameter

The results must be state-changing Above defenses can in theory be applied
only to requests that change state.

The JavaScript Injection Loophole

• Since the request comes from the same site
• Cookies will always be sent

• JavaScript is allowed to read page contents to retrieve CSRF tokens

• JavaScript is allowed to add custom request headers (authentication and
anti-CSRF)

• JavaScript can call worker threads to submit protected tokens

If you have a JavaScript Injection vulnerability on your site…

ALL IS LOST

Clickjacking

• Technically a risk
• Facebook got hit with a number of attacks around 20xx

• Very rarely seen in web apps

• More of an issue in mobile apps, but sessions are different inside an
application

• Simple to prevent
• X-Frame Options Header

• Framing-Ancestor CSP Directive

Post-Compromise
Defenses

Login

Lifetime of a Session Token

Logout

Compromise Logout

Login

Session Lifetime: User doesn’t log out

Logout

Compromise

Idle
Timeout

Absolute
Timeout

Why JWTs are BAD BAD BAD Slightly Worse

Login Logout

Compromise Expiration

How many sessions does one user need?

• Allowing a only a single active session
• Becomes another termination point for a stolen session

• Can be a detection opportunity if a message is displayed

• If multiple sessions are allowed
• Provide a way for a user to review and terminate sessions

Additional Defenses

• “Last Login” messages also provide a detection opportunity

• Reauthenticating for sensitive transactions (password changes,
money transfers, final approvals, etc.) also limits blast radius

Session Length Summary

• Make your idle and absolute session timeouts as short as the
business will allow

• Allow multiple sessions only if the use case requires it

• If multiple sessions are allowed, show active sessions to the user
somewhere

• Implement a “Last Login” message

• Require reauthentication before doing the most sensitive tasks

State of the Art

Cross-device tokens aren’t a thing

Token Binding (Microsoft 2016)

1. Client initiates the TLS connection with the “token binding” extension set to
active and the server responds that it is supported.

2. Client generates a public/private key pair for this specific server/session and
stores the private key in the TPM.

3. Client sends the public key in an HTTP Request header during the
authentication process.

4. If authentication is successful, the server stores the public key with the session.

5. On future requests, the client takes random constants exchanged during TLS
initiation, encrypts them with the private key, and sends the encrypted values
to the server.

6. The server uses the client’s public key to decrypt the values and compares
them with the random constants it also knows to verify the session.

TLS ExtensionPub/Priv Key Pair HSM/TPM HTTP Header

Device Bound Session Credentials (Google 2024)

1. The user signs in to the website.

2. The server returns an HTTP header with a challenge, and token
management endpoints.

3. The browser generates a public-private key pair with the private
key stored in the TPM.

4. The browser POSTs the signed challenge and public key to a
“startsession” endpoint.

5. The server returns a session token with a “short” lifetime.

6. When the token expires, the browser requests a new challenge
from the “refresh” endpoint.

7. The challenge is signed and resubmitted to get a fresh token.

Challenges for DBSC

• Not all devices have a TPM
• Google has developed an “emulated” TPM that will not be as good as a real

TPM, but will do it’s best and will at least be better than a cookie file.

• They’re using a JWT

• Technically, there is still a token that can be used on another device
• Its lifetime “should” be 10 minutes or less

• Adoption!
• Other browsers are supposedly implementing the standard, but so far it is

only in Chrome 126+

• Other browsers will have to also provide an emulated TPM

Conclusion

• Session attacks have matured, but often rely on the same
flaws older attacks used

• In the opinion of a pentester, developers treat defenses as
“old fashioned” and leave them out

• Defenses are “usually” trivial to implement which “should”
make the return-on-investment case an easy one

• Device Bound Session Credentials are a game changer

Thank You!

Mark Hoopes

mark@meristeminfosec.com

https://www.linkedin.com/in/markhoopes/

Slides and
Articles Suitable for Sharing with Developers

https://www.merisec.com/blog

https://www.merisec.com/blog

Where are the Cookies Really?

Browser Location (Windows)

Chrome %LOCALAPPDATA%\Google\Chrome\User Data\Default\Network\Cookies

Firefox %APPDATA%\Mozilla\Firefox\Profiles\[random ID]\cookies.sqlite

Edge %LOCALAPPDATA%\Microsoft\Edge\User Data\Default\Network\Cookies

Opera %AppData%\Opera Software\Opera Stable\Network\Cookies

Browser Location (Mac)

Safari ~/Library/Containers/com.apple.Safari/Data/Library/Cookies/*.binarycookies

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6: Session Defenses… Why?
	Slide 7
	Slide 8: Cookie RFC Section 8: Security Considerations
	Slide 9
	Slide 10: RFC 2109: Section 4.2.2
	Slide 11
	Slide 12
	Slide 13: But…Network Segmentation…
	Slide 14: “On-the-wire” Defenses
	Slide 15
	Slide 16: Origins of “Cross-site Scripting”
	Slide 17: JavaScript Injection (JSI) Defenses
	Slide 18
	Slide 19: Not All Session Tokens are Cookies
	Slide 20
	Slide 21: JavaScript Injection Defenses
	Slide 22
	Slide 23: No token. No problem?
	Slide 24: CSRF Requirements
	Slide 25: The JavaScript Injection Loophole
	Slide 26: Clickjacking
	Slide 27
	Slide 28: Lifetime of a Session Token
	Slide 29: Session Lifetime: User doesn’t log out
	Slide 30: Why JWTs are BAD BAD BAD Slightly Worse
	Slide 31: How many sessions does one user need?
	Slide 32: Additional Defenses
	Slide 33: Session Length Summary
	Slide 34
	Slide 35: Cross-device tokens aren’t a thing
	Slide 36: Token Binding (Microsoft 2016)
	Slide 37: Device Bound Session Credentials (Google 2024)
	Slide 38: Challenges for DBSC
	Slide 39
	Slide 40
	Slide 41
	Slide 42: Thank You!
	Slide 43: Where are the Cookies Really?

